Boundary action of automaton groups without singular points and Wang tilings

نویسندگان

  • Daniele D'Angeli
  • Thibault Godin
  • Ines Klimann
  • Matthieu Picantin
  • Emanuele Rodaro
چکیده

We study automaton groups without singular points, that is, points in the boundary for which the map that associates to each point its stabilizer, is not continuous. This is motivated by the problem of finding examples of infinite bireversible automaton groups with all trivial stabilizers in the boundary, raised by Grigorchuk and Savchuk. We show that, in general, the set of singular points has measure zero. Then we focus our attention on several classes of automata. We characterize those contracting automata generating groups without singular points, and apply this characterization to the Basilica group. We prove that potential examples of reversible automata generating infinite groups without singular points are necessarily bireversible. Then we provide some necessary conditions for such examples to exist, and study some dynamical properties of their Schreier graphs in the boundary. Finally we relate some of those automata with aperiodic tilings of the discrete plane via Wang tilings. This has a series of consequences from the algorithmic and dynamical points of view, and is related to a problem of Gromov regarding the searching for examples of CAT(0) complexes whose fundamental groups are not hyperbolic and contain no subgroup isomorphic to Z2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

گسترش روش بدون شبکه توابع پایه نمایی برای حل مسائل تکین ورق

: Existence of singular points inside the solution domain or on its boundary deteriorates the accuracy and convergence rate of numerical methods. This phenomenon usually happens due to discontinuities in the boundary conditions or abrupt changes in the domain shape. This study has focused on the solution of singular plate problems using the exponential basis functions method. In this method, un...

متن کامل

Automaton (semi)groups: Wang tilings and Schreier tries

Groups and semigroups generated by Mealy automata were formally introduced in the early sixties. They revealed their full potential over the years, by contributing to important conjectures in group theory. In the current chapter, we intend to provide various combinatorial and dynamical tools to tackle some decision problems all related to some extent to the growth of automaton (semi)groups. In ...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

Transient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative

In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary condition is considered. The corresponding fractional system is represented by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are acquired by means of Laplace and finite Hankel transforms. Additionally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1604.07736  شماره 

صفحات  -

تاریخ انتشار 2016